Electron irradiation effects on superconductivity in PdTe2: An application of a generalized Anderson theorem

Thumbnail Image
Date
2020-05-08
Authors
Timmons, Erik
Teknowijoyo, S.
Kończykowski, M.
Cavani, O.
Tanatar, Makariy
Ghimire, Sunil
Cho, Kyuil
Lee, Yongbin
Ke, Liqin
Jo, Na Hyun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames Laboratory
Abstract

Low-temperature (∼20 K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled nonmagnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe2. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using the tunnel-diode resonator technique for various irradiation doses. The normal-state electrical resistivity follows the Matthiessen rule with an increase of the residual resistivity at a rate of ∼0.77μΩcm/(C/cm2). London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a nonzero rate that is about 16 times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band s-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multiband superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional A+−1g state. While we cannot exclude the conventional A++1g and the triplet A1u, we demonstrate that these candidates require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intraband scattering for the singlet state significantly larger than 1. Due to the generality of our theoretical framework, we believe that it will also be useful for irradiation studies in other spin-orbit-coupled multiorbital systems.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections