Utilization of mechanocatalytic oligosaccharides by ethanologenic Escherichia coli as a model microbial cell factory

Thumbnail Image
Date
2020-02-03
Authors
Jin, Tao
Käldström, Mats
Benavides, Adriana
Kaufman Rechulski, Marcelo
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jarboe, Laura
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Mechanocatalysis is a promising method for depolymerization of lignocellulosic biomass. Microbial utilization of the resulting oligosaccharides is one potential route of adding value to the depolymerized biomass. However, it is unclear how readily these oligosaccharides are utilized by standard cell factories. Here, we investigate utilization of cellulose subjected to mechanocatalytic depolymerization, using ethanologenic Escherichia coli as a model fermentation organism. The mechanocatalytic oligosaccharides supported ethanol titers similar to those observed when glucose was provided at comparable concentrations. Tracking of the various oligomers, using maltose (alpha-1,4) and cellobiose (beta-1,4) oligomers as representative standards of the orientation, but not linkage, of the glycosidic bond, suggests that the malto-like-oligomers are more readily utilized than cello-like-oligomers, consistent with poor growth with cellotetraose or cellopentaose as sole carbon source. Thus, mechanocatalytic oligosaccharides are a promising substrate for cell factories, and microbial utilization of these sugars could possibly be improved by addressing utilization of cello-like oligomers.

Comments

This article is published as Jin, Tao, Mats Käldström, Adriana Benavides, Marcelo D. Kaufman Rechulski, and Laura R. Jarboe. "Utilization of mechanocatalytic oligosaccharides by ethanologenic Escherichia coli as a model microbial cell factory." AMB Express 10 (2020): 28. DOI: 10.1186/s13568-020-0965-4. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections