Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

dc.contributor.author Hsu, Ming-Chen
dc.contributor.author Kamensky, David
dc.contributor.author Hsu, Ming-Chen
dc.contributor.author Xu, Fei
dc.contributor.author Kiendl, Josef
dc.contributor.author Wang, Chenglong
dc.contributor.author Wu, Michael
dc.contributor.author Mineroff, Joshua
dc.contributor.author Reali, Alessandro
dc.contributor.author Bazilevs, Yuri
dc.contributor.author Sacks, Michael
dc.contributor.department Mechanical Engineering
dc.date 2018-01-25T07:41:16.000
dc.date.accessioned 2020-06-30T06:04:22Z
dc.date.available 2020-06-30T06:04:22Z
dc.date.copyright Thu Jan 01 00:00:00 UTC 2015
dc.date.issued 2015-06-01
dc.description.abstract <p>This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.</p>
dc.description.comments <p>The final publication is available at Springer via https://doi.org/<a href="http://dx.doi.org/10.1007/s00466-015-1166-x" target="_blank">10.1007/s00466-015-1166-x</a>. Hsu, Ming-Chen, David Kamensky, Fei Xu, Josef Kiendl, Chenglong Wang, Michael CH Wu, Joshua Mineroff, Alessandro Reali, Yuri Bazilevs, and Michael S. Sacks. "Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models." Computational Mechanics 55, no. 6 (2015): 1211-1225. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/me_pubs/264/
dc.identifier.articleid 1253
dc.identifier.contextkey 11348477
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath me_pubs/264
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/55125
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/me_pubs/264/2015_Hsu_DynamicFluid.pdf|||Fri Jan 14 23:03:02 UTC 2022
dc.source.uri 10.1007/s00466-015-1166-x
dc.subject.disciplines Biomaterials
dc.subject.disciplines Biomedical Engineering and Bioengineering
dc.subject.disciplines Mechanical Engineering
dc.subject.keywords Fluid–structure interaction
dc.subject.keywords Bioprosthetic heart valve
dc.subject.keywords Isogeometric analysis
dc.subject.keywords Immersogeometric analysis
dc.subject.keywords Arbitrary Lagrangian–Eulerian
dc.subject.keywords NURBS and T-splines
dc.subject.keywords Kirchhoff–Love shell
dc.subject.keywords Fung-type hyperelastic model
dc.title Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication a780f854-309d-4de9-a355-1cebcaf3d6a5
relation.isOrgUnitOfPublication 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59
File
Original bundle
Now showing 1 - 1 of 1
Name:
2015_Hsu_DynamicFluid.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:
Collections