Boundary Integral and Finite Element Simulation of Electromagnetic NDE Phenomena

Thumbnail Image
Date
1990
Authors
Nath, S.
Shin, Y.
Lord, W.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Rudolphi, Thomas
Professor Emeritus
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Finite element (FE) studies of energy/material interactions associated with the nondestructive evaluation (NDE) of materials have not only yielded useful information concerning the physics of new NDE phenomena [1] but also provided “test-beds” for the simulation of NDE situations too difficult to replicate in a laboratory environment [2]. FE code has been developed for the analysis of those NDE processes governed by elliptic [3], parabolic [4] and hyperbolic [5] partial differential equation (PDE) types taking advantage of axisymmetry wherever possible in order to conserve computer capacity. In those situations requiring fine spatial and/or temporal discretization, it has been found that the FE code makes excessive demands on even the best computer resources. Examples of this situation include the finite element modeling of the remote field effect in large diameter pipelines [6] and the simulation of ultrasonic wave propagation through large structures [7].

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1990