Evaluation of an optimal aerocapture guidance algorithm for human Mars missions

Thumbnail Image
Date
2016-01-01
Authors
Webb, Kyle
Major Professor
Advisor
Ping Lu
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Aeroassist guidance is concerned with providing steering commands to a vehicle flying through a planetary atmosphere in the form of an aerodynamic roll angle, or bank angle, which results in appropriate direction of the aerodynamic lift force so that the vehicle will safely and accurately reach its designated final condition. Aerocapture guidance is a particular subcategory of aeroassist guidance that involves atmospheric entry from an interplanetary transfer orbit, a guided flight through the atmosphere, and a final condition consisting of a post-atmospheric exit target orbit around the planet. Using aerocapture guidance to establish this target orbit can provide significant propellant mass savings when compared to traditional propulsive maneuvers. No current aerocapture guidance algorithms can ensure truly optimal performance in minimizing post-exit orbit insertion ΔV requirements. This thesis investigates the development of a two-phase optimal aerocapture guidance algorithm. This closed-loop guidance algorithm uses a mathematically optimal bang-bang bank angle profile structure, in which a vehicle first flies with the lift vector pointed straight up, and then flies full lift-down until atmospheric exit. The optimal trajectory is found by determining the switching time between full lift-up and full lift-down flight. Results from testing the algorithm in a high-fidelity NASA simulation environment are presented and compared with results from existing state-of-the-art aerocapture guidance algorithms. These results show that the developed algorithm provides the robustness and adaptability of a numerical predictor-corrector guidance algorithm while demonstrating a significant reduction in ΔV requirements compared to other existing algorithms.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2016