Energetics of Cu adsorption and intercalation at graphite step edges

Date
2019-03-11
Authors
Han, Yong
Lii-Rosales, Ann
Tringides, Michael
Evans, James
Thiel, Patricia
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Chemistry
Organizational Unit
Journal Issue
Series
Abstract

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable, as for the zigzag step, then decorating the step with a Cu chain facilitates intercalation by additional Cu atoms (which are less strongly bound to the decorated step). For more stable steps, intercalation is optimal without decoration. We also calculate the diffusion barrier for atomic Cu on top of the graphite terrace and, in the uppermost gallery, find values of 0.008 and 0.021 eV, respectively. These values are very small, indicating that the minimum barrier for a Cu atom to detach from a step and move to a terrace or gallery is dominated by the difference in binding energies. For intercalation, this minimum barrier is 1.4 to 3.1 eV and depends strongly on step configuration.

Description
Keywords
Citation
Collections