Density Functional Studies on the Complexation and Spectroscopy of Uranyl Ligated with Acetonitrile and Acetone Derivatives

Thumbnail Image
Date
2009-07-01
Authors
Schoendorff, George
Windus, Theresa
de Jong, Wibe
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Windus, Theresa
Department Chair
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

The coordination of nitrile (acetonitrile, propionitrile, and benzonitrile) and carbonyl (formaldehyde, acetaldehyde, and acetone) ligands to the uranyl dication (UO22+) has been examined using density functional theory (DFT) utilizing relativistic effective core potentials (RECPs). Complexes containing up to six ligands have been modeled in the gas phase for all ligands except formaldehyde, for which no minimum could be found. A comparison of relative binding energies indicates that 5-coordinate complexes are predominant, while 6-coordinate complexes involving propionitrile and acetone ligands might be possible. Additionally, the relative binding energy and the weakening of the uranyl bond is related to the size of the ligand, and in general, nitriles bind more strongly to uranyl than carbonyls.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry A 113 (2009): 12525, doi:10.1021/jp9038623.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections