Silica-Supported Organolanthanum Catalysts for C–O Bond Cleavage in Epoxides

Date
2020-02-12
Authors
Wang, Zhuoran
Patnaik, Smita
Eedugurala, Naresh
Manzano, J. Sebastián
Slowing, Igor
Kobayashi, Takeshi
Sadow, Aaron
Pruski, Marek
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Chemistry
Organizational Unit
Journal Issue
Series
Abstract

Single-site organolanthanum complexes supported on mesoporous silica nanoparticles, La{C(SiHMe2)3}n@MSNs, catalyze the ring-opening hydroboration reaction of aliphatic and styrenic epoxides with pinacolborane (HBpin). The surface-bound complexes, synthesized by reaction of the homoleptic tris(alkyl)lanthanum La{C(SiHMe2)3}3 and SBA-type MSN treated at 700 °C (MSN700), are mostly monopodal ≡SiO—La{C(SiHMe2)3}2 and contain an average of one bridging La↼H—Si per alkyl ligand. This structure was established through a combination of solid-state NMR (SSNMR) experiments, including J-resolved SiH coupling and quantitative 29Si measurements, diffuse reflectance IR, and elemental analysis. These rigorous analyses also established that grafting reactions in pentane provide a preponderance of ≡SiO—La{C(SiHMe2)3}2 sites and are superior to those in benzene and THF, and that grafting onto MSN treated at 550 °C (MSN550) results in a mixture of surface species. The single-site supported catalysts are more selective and in most cases more active than the homogeneous analogue, allow easy purification of products from the catalyst, are strongly resistant to leaching into solution phase, and may be recycled for reuse at least five times. After reaction of La{C(SiHMe2)3}n@MSN and HBpin, species including ≡SiO—La{C(SiHMe2)3}(H2Bpin) and ≡SiO—La{C(SiHMe2)3}{κ2–pinB–O(CMe2)2OBH3} are identified by detailed 1D and 2D 11B SSNMR experiments.

Description
Keywords
Citation
DOI
Collections