Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis

Thumbnail Image
Boggiatto, Paola
Schaut, Robert
Kanipe, Carly
Kelly, Sean
Narasimhan, Balaji
Jones, Douglas
Olsen, Steven
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Narasimhan, Balaji
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Pathology
The Department of Veterinary Pathology Labs provides high quality diagnostic service to veterinarians in Iowa and throughout the Midwest. Packages may be delivered through the postage service or by dropping samples off at our lab in Iowa State University’s College of Veterinary Medicine campus.
Organizational Unit
Journal Issue
Is Version Of
Veterinary PathologyChemical and Biological EngineeringNanovaccine Institute

Brucellosis is a bacterial zoonosis and a significant source of economic loss and a major public health concern, worldwide. Bovine brucellosis, as caused primarily by Brucella abortus, is an important cause of reproductive loss in cattle. Vaccination has been the most effective way to reduce disease prevalence contributing to the success of control and eradication programs. Currently, there are no human vaccines available, and despite the success of commercial vaccines for livestock, such as B. abortus strain RB51 (RB51), there is need for development of novel and safer vaccines against brucellosis. In the current study, we report the fabrication of and immune responses to an implantable single dose polyanhydride-based, methanol-killed RB51 antigen containing delivery platform (VPEAR) in cattle. In contrast to animals vaccinated with RB51, we did not observe measurable RB51-specific IFN-γ or IgG responses in the peripheral blood, following initial vaccination with VPEAR. However, following a subsequent booster vaccination with RB51, we observed an anamnestic response in both vaccination treatments (VPEAR and live RB51). The magnitude and kinetics of CD4+ IFN-γ-mediated responses and circulating memory T cell subpopulations were comparable between the two vaccination treatments. Additionally, IgG titers were significantly increased in animals vaccinated with VPEAR as compared to live RB51- vaccinated animals. These data demonstrate that killed antigen may be utilized to generate and sustain memory, IFN-γ-mediated, CD4+ T cell and humoral responses against Brucella in a natural host. To our knowledge, this novel approach to vaccination against intracellular bacteria, such as Brucella, has not been reported before.


This article is published as Boggiatto, Paola M., Robert G. Schaut, Carly Kanipe, Sean M. Kelly, Balaji Narasimhan, Douglas E. Jones, and Steven C. Olsen. "Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis." Heliyon 5, no. 8 (2019): e02370. DOI: 10.1016/j.heliyon.2019.e02370.