Medium-Range Ordering in the Ionic Glass Electrolytes LiPON and LiSiPON

Thumbnail Image
Date
2023-03-27
Authors
Westover, Andrew S.
Kornbluth, Mordechai
Egami, Takeshi
Liu, Jue
Kalnaus, Sergiy
Ma, Dong
Kercher, Andrew K.
Neuefeind, Joerg C.
Everett, Michelle
Torres, Victor
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and Engineering
Abstract
Here, we provide an in-depth structural characterization of the amorphous ionic glasses LiPON and LiSiPON with high Li content. Based on ab initio molecular dynamics simulations, the structure of these materials is an inverted structure with either isolated polyanion tetrahedra or polyanion dimers in a Li+ matrix. Based on neutron scattering data, this type of inverted structure leads to a significant amount of medium-range ordering in the structure, as demonstrated by two sharp diffraction peaks and a periodic structural oscillation in the density function G(r). While this medium-range ordering is commonly observed in liquids and metallic glasses, it has not previously been observed in oxides. On a local scale, adding N and Si increases the number of anion bridges and polyanion dimer structures, leading to higher ionic conductivity. In the medium-range ordering, the addition of Si leads to more disorder in the polyanion substructure but a significant increase in the ordering of the O substructure. Finally, we demonstrate that this inverted structure with medium-range ordering results in a glassy material that is both mechanically stiff and ductile on the nanoscale.
Comments
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © 2023 American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.chemmater.2c02380. Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections