Theoretical Analysis of Mound Slope Selection during Unstable Multilayer Growth

Thumbnail Image
Li, Maozhi
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Evans, James
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of

A "step dynamics" model is developed for mound formation during multilayer homoepitaxy. Downward funneling of atoms deposited at step edges is incorporated and controls mound slope selection. Behavior of the selected slope differs from that predicted by phenomenological continuum treatments where the lateral mass current vanishes identically. Instead, this current is shown to vary periodically and vanish only on average. An exact coarse-grained continuum formulation with appropriate boundary conditions is derived and recovers step dynamics results.


This article is from Physical Review Letters 95 (2005): 25601, doi: 10.1103/PhysRevLett.95.256101. Posted with permission.

Subject Categories
Sat Jan 01 00:00:00 UTC 2005