MCS rainfall forecast accuracy as a function of large-scale forcing

Thumbnail Image
Date
2004-01-01
Authors
Jankov, Isidora
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Gallus, William
Professor
Research Projects
Organizational Units
Organizational Unit
Geological and Atmospheric Sciences

The Department of Geological and Atmospheric Sciences offers majors in three areas: Geology (traditional, environmental, or hydrogeology, for work as a surveyor or in mineral exploration), Meteorology (studies in global atmosphere, weather technology, and modeling for work as a meteorologist), and Earth Sciences (interdisciplinary mixture of geology, meteorology, and other natural sciences, with option of teacher-licensure).

History
The Department of Geology and Mining was founded in 1898. In 1902 its name changed to the Department of Geology. In 1965 its name changed to the Department of Earth Science. In 1977 its name changed to the Department of Earth Sciences. In 1989 its name changed to the Department of Geological and Atmospheric Sciences.

Dates of Existence
1898-present

Historical Names

  • Department of Geology and Mining (1898-1902)
  • Department of Geology (1902-1965)
  • Department of Earth Science (1965-1977)
  • Department of Earth Sciences (1977-1989)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

The large-scale forcing associated with 20 mesoscale convective system (MCS) events has been evaluated to determine how the magnitude of that forcing influences the rainfall forecasts made with a 10-km grid spacing version of the Eta Model. Different convective parameterizations and initialization modifications were used to simulate these Upper Midwest events. Cases were simulated using both the Betts-Miller-Janjić (BMJ) and the Kain-Fritsch (KF) convective parameterizations, and three different techniques were used to improve the initialization of mesoscale features important to later MCS evolution. These techniques included a cold pool initialization, vertical assimilation of surface mesoscale observations, and an adjustment to initialized relative humidity based on radar echo coverage. As an additional aspect in this work, a morphology analysis of the 20 MCSs was included. Results suggest that the model using both schemes performs better when net large-scale forcing is strong, which typically is the case when a cold front moves across the domain. When net forcing is weak, which is often the case in midsummer situations north of a warm or stationary front, both versions of the model perform poorly. Runs with the BMJ scheme seem to be more affected by the magnitude of surface frontogenesis than the KF runs. Runs with the KF scheme are more sensitive to the CAPE amount than the BMJ runs. A fairly well-defined split in morphology was observed, with squall lines having trading stratiform regions likely in scenarios associated with higher equitable threat scores (ETSs) and nonlinear convective clusters strongly dominating the more poorly forecast weakly forced events.

Comments

This article is from Weather and Forecasting 19 (2004): 428, doi: 10.1175/1520-0434(2004)019<0428:MRFAAA>2.0.CO;2. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections