A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives
A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives
dc.contributor.advisor | Larry L. Bradshaw | |
dc.contributor.author | Colen, Charles | |
dc.contributor.department | Industrial Education and Technology | |
dc.date | 2018-08-23T12:02:05.000 | |
dc.date.accessioned | 2020-06-30T07:16:18Z | |
dc.date.available | 2020-06-30T07:16:18Z | |
dc.date.copyright | Thu Jan 01 00:00:00 UTC 1998 | |
dc.date.issued | 1998 | |
dc.description.abstract | <p>There have been numerous studies with ultrasonic nondestructive testing and wood fiber composites. The problem of the study was to ascertain whether ultrasonic nondestructive testing can be used in place of destructive testing to obtain the modulus of elasticity (MOE) of the wood/agricultural material with comparable results. The uniqueness of this research is that it addressed the type of content (cornstalks and switchgrass) being used with the wood fibers and the type of adhesives (soybean-based) associated with the production of these composite materials;Two research questions were addressed in the study. The major objective was to determine if one can predict the destructive test MOE value based on the nondestructive test MOE value. The population of the study was wood/agricultural fiberboards made from wood fibers, cornstalks, and switchgrass bonded together with soybean-based, urea-formaldehyde, and phenol-formaldehyde adhesives;Correlational analysis was used to determine if there was a relationship between the two tests. Regression analysis was performed to determine a prediction equation for the destructive test MOE value. Data were collected on both procedures using ultrasonic nondestructing testing and 3-point destructive testing;The results produced a simple linear regression model for this study which was adequate in the prediction of destructive MOE values if the nondestructive MOE value is known. An approximation very close to the entire error in the model equation was explained from the destructive test MOE values for the composites. The nondestructive MOE values used to produce a linear regression model explained 83% of the variability in the destructive test MOE values. The study also showed that, for the particular destructive test values obtained with the equipment used, the model associated with the study is as good as it could be due to the variability in the results from the destructive tests;In this study, an ultrasonic signal was used to determine the MOE values on nondestructive tests. Future research studies could use the same or other hardboards to examine how the resins affect the ultrasonic signal.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/rtd/11851/ | |
dc.identifier.articleid | 12850 | |
dc.identifier.contextkey | 6510342 | |
dc.identifier.doi | https://doi.org/10.31274/rtd-180813-10775 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | rtd/11851 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/65154 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/rtd/11851/r_9841043.pdf|||Fri Jan 14 18:59:45 UTC 2022 | |
dc.subject.disciplines | Agriculture | |
dc.subject.disciplines | Industrial Engineering | |
dc.subject.disciplines | Materials Science and Engineering | |
dc.subject.disciplines | Wood Science and Pulp, Paper Technology | |
dc.subject.keywords | Industrial education and technology | |
dc.title | A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives | |
dc.type | article | |
dc.type.genre | dissertation | |
dspace.entity.type | Publication | |
thesis.degree.level | dissertation | |
thesis.degree.name | Doctor of Philosophy |
File
Original bundle
1 - 1 of 1