Structure and diffracted intensity in a model for irreversible island‐forming chemisorption with domain boundaries

Date
1987
Authors
Evans, James
Nord, R.
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Mathematics
Organizational Unit
Journal Issue
Series
Abstract

Despite the awareness that island‐forming chemisorption is often kinetically limited and intrinsically nonequilibrium, there is little sophisticated analysis of the corresponding island structure or diffracted intensity. Here we analyze a model where species irreversibly and immobilely chemisorb (commensurately) from a precursor source, with distinct rates for island nucleation (chemisorptionin an empty region) and growth (chemisorption at island perimeters), the latter rates being larger. Specifically, we consider the formation of one‐dimensional double‐spaced islands, and two‐dimensional checkerboard C(2×2) islands on a square lattice. In both cases (permanent) domain boundaries form between out‐of‐phase islands. We analyze scaling of the saturation coverage, a characteristiclinear island dimension, spatial correlations, etc., with the ratio of growth to nucleation rates. The structure of individual islands, and of the saturation domain boundary ‘‘network’’ are elucidated. The corresponding diffracted intensity exhibits significant interference at superlattice beams, and diminution at integral order beams as saturation is approached.

Description

This article is published as Evans, Jo W., and R. S. Nord. "Structure and diffracted intensity in a model for irreversible island‐forming chemisorption with domain boundaries." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (1987): 1040-1044, doi:10.1116/1.574181. Posted with permission.

Keywords
Chemisorption, Spatial analysis, Nucleation, Statistical properties, Superlattices
Citation
DOI
Collections