Identification of Genomic Regions Associated with Feed Efficiency in Nelore Cattle

Thumbnail Image
Date
2014-01-01
Authors
Oliveira, Priscila
Cesar, Aline
do Nascimento, Michele
Chaves, Amália
Tizioto, Polyana
Tullio, Rymer
Lanna, Dante
Rosa, Antonio
Sonstegard, Tad
Mourão, Gerson
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Reecy, James
Associate Vice President
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Feed efficiency is jointly determined by productivity and feed requirements, both of which are economically relevant traits in beef cattle production systems. The objective of this study was to identify genes/QTLs associated with components of feed efficiency in Nelore cattle using Illumina BovineHD BeadChip (770 k SNP) genotypes from 593 Nelore steers. The traits analyzed included: average daily gain (ADG), dry matter intake (DMI), feed-conversion ratio (FCR), feed efficiency (FE), residual feed intake (RFI), maintenance efficiency (ME), efficiency of gain (EG), partial efficiency of growth (PEG) and relative growth rate (RGR). The Bayes B analysis was completed with Gensel software parameterized to fit fewer markers than animals. Genomic windows containing all the SNP loci in each 1 Mb that accounted for more than 1.0% of genetic variance were considered as QTL region. Candidate genes within windows that explained more than 1% of genetic variance were selected by putative function based on DAVID and Gene Ontology. Thirty-six QTL (1-Mb SNP window) were identified on chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25 and 26 (UMD 3.1). The amount of genetic variance explained by individual QTL windows for feed efficiency traits ranged from 0.5% to 9.07%. Some of these QTL minimally overlapped with previously reported feed efficiency QTL for Bos taurus. The QTL regions described in this study harbor genes with biological functions related to metabolic processes, lipid and protein metabolism, generation of energy and growth. Among the positional candidate genes selected for feed efficiency are: HRH4, ALDH7A1, APOA2, LIN7C, CXADR, ADAM12and MAP7. Some genomic regions and some positional candidate genes reported in this study have not been previously reported for feed efficiency traits in Bos indicus. Comparison with published results indicates that different QTLs and genes may be involved in the control of feed efficiency traits in this Nelore cattle population, as compared to Bos taurus cattle.

Comments

This article is from BMS Genomics 15 (2014): 100, doi:10.1186/s12863-014-0100-0.

Description
Keywords
Citation
DOI
Copyright
Collections