High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns

Thumbnail Image
Date
2020-01-17
Authors
Niaraki Asli, Amir Ehsan
Guo, Jingshuai
Lai, Pei Lun
Montazami, Reza
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Authors
Person
Hashemi, Nicole
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Bioeconomy Institute
The Bioeconomy Institute at Iowa State University leads the nation and world in establishing the bioeconomy, where society obtains renewable fuel, energy, chemicals, and materials from agricultural sources. The institute seeks to advance the use of biorenewable resources for the production of fuels, energy, chemicals, and materials. The Institute will assure Iowa’s prominence in the revolution that is changing the way society obtains its essential sources of energy and carbon. This revolution will dramatically reduce our dependence on petroleum. Instead of fossil sources of carbon and energy, the bioeconomy will use biomass (including lignocellulose, starches, oils and proteins) as a renewable resource to sustain economic growth and prosperity. Agriculture will supply renewable energy and carbon to the bioeconomy while engineering will transform these resources into transportation fuels, commodity chemicals, and electric power. This transformation, however, must be done in a manner that meets our present needs without compromising those of future generations.
Journal Issue
Is Version Of
Versions
Series
Abstract
Presented here is a scalable and aqueous phase exfoliation of graphite to high yield and quality of few layer graphene (FLG) using Bovine Serum Albomine (BSA) and wet ball milling. The produced graphene ink is tailored for printable and flexible electronics, having shown promising results in terms of electrical conductivity and temporal stability. Shear force generated by steel balls which resulted in 2–3 layer defect-free graphene platelets with an average size of hundreds of nm, and with a concentration of about 5.1 mg/mL characterized by Raman spectroscopy, atomic force microscopy (AFM), transmittance electron microscopy (TEM) and UV-vis spectroscopy. Further, a conductive ink was prepared and printed on flexible substrate (Polyimide) with controlled resolution. Scanning electron microscopy (SEM) and Profilometry revealed the effect of thermal annealing on the prints to concede consistent morphological characteristics. The resulted sheet resistance was measured to be Rs = 36.75 Ω/sqr for prints as long as 100 mm. Printable inks were produced in volumes ranging from 20 mL to 1 L, with potential to facilitate large scale production of graphene for applications in biosensors, as well as flexible and printable electronics.
Comments
This article is published as Niaraki Asli, Amir Ehsan, Jingshuai Guo, Pei Lun Lai, Reza Montazami, and Nicole N. Hashemi. "High-yield production of aqueous graphene for electrohydrodynamic drop-on-demand printing of biocompatible conductive patterns." Biosensors 10, no. 1 (2020): 6. DOI: 10.3390/bios10010006. Copyright 2020 by the authors. Attribution 4.0 International (CC BY 4.0). Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections