Designing Asymmetrically Modified Nanochannel Sensors Using Virtual EIS

Shrotriya, Pranav
Devarakonda, Sivaranjani
Kim, Sungu
Ganapathysubramanian, Baskar
Shrotriya, Pranav
Ganapathysubramanian, Baskar
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Mechanical Engineering
Organizational Unit
Journal Issue
Mechanical EngineeringElectrical and Computer EngineeringPlant Sciences Institute

Monitoring electrochemical impedance changes across an asymmetrically functionalized nanochannel array provides an attractive mechanism for chemical and biological sensors. Specific binding of the receptor molecules with their analyte leads to changes in charge distribution on the nanochannel surfaces modifying the ionic transport across them. The magnitude of impedance change due to receptor/ligand binding or sensor sensitivity depends on a large number of parameters and consequently, identification of parameters that result in sensitive and specific sensing performance is extremely tedious and cost-intensive. We rely on a ’virtual EIS’ procedure that models the transient ionic current due to a step-change in voltage to determine the frequency dependent impedance of an asymmetrically functionalized nanochannel. This procedure is used to predict the impedance changes due to the specific binding of thrombin on nanochannel surfaces. Surface charge changes associated with the binding of thrombin protein on the aptamer coated surface result in a decrease of the membrane impedance and computational results suggest that a reduction in the ionic strength of the electrolyte leads to an increase in the magnitude of binding induced impedance reduction. Sensing experiments with thrombin binding aptamer are performed to evaluate the trends from the high-throughput computations. The agreement between model predictions and experimental observations suggests that the present modeling approach may be utilized to computationally evaluate sensor performance for a range of parameters and rapidly identify sensor configurations that enable point-of-care diagnostic devices with improved sensitivities.


This is a pre-print of the article Devarakonda, Sivaranjani, Sungu Kim, Baskar Ganapathysubramanian, and Pranav Shrotriya. "Designing Asymmetrically Modified Nanochannel Sensors Using Virtual EIS." (2021). DOI: 10.26434/chemrxiv.14714895.v1. Posted with permission.