Fully Bayesian analysis of allele-specific RNA-seq data
Date
Authors
Niemi, Jarad
Niemi, Jarad
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Abstract
Diploid organisms have two copies of each gene, called alleles, that can be separately transcribed. The RNA abundance associated to any particular allele is known as allele-specific expression (ASE). When two alleles have polymorphisms in transcribed regions, ASE can be studied using RNA-seq read count data. ASE has characteristics different from the regular RNA-seq expression: ASE cannot be assessed for every gene, measures of ASE can be biased towards one of the alleles (reference allele), and ASE provides two measures of expression for a single gene for each biological samples with leads to additional complications for single-gene models. We present statistical methods for modeling ASE and detecting genes with differential allelic expression. We propose a hierarchical, overdispersed, count regression model to deal with ASE counts. The model accommodates gene-specific overdispersion, has an internal measure of the reference allele bias, and uses random effects to model the gene-specific regression parameters. Fully Bayesian inference is obtained using the fbseq package that implements a parallel strategy to make the computational times reasonable. Simulation and real data analysis suggest the proposed model is a practical and powerful tool for the study of differential ASE.
Comments
This article is published as Alvarez-Castro, Ignacio, and Jarad Niemi. "Fully Bayesian analysis of allele-specific RNA-seq data." Mathematical Biosciences and Engineering 16 (2019): 7751-7770. doi: 10.3934/mbe.2019389.