Algorithms for weighted multidimensional search and perfect phylogeny
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract
This dissertation is a collection of papers from two independent areas: convex optimization problems in R[superscript]d and the construction of evolutionary trees;The paper on convex optimization problems in R[superscript]d gives improved algorithms for solving the Lagrangian duals of problems that have both of the following properties. First, in absence of the bad constraints, the problems can be solved in strongly polynomial time by combinatorial algorithms. Second, the number of bad constraints is fixed. As part of our solution to these problems, we extend Cole's circuit simulation approach and develop a weighted version of Megiddo's multidimensional search technique;The papers on evolutionary tree construction deal with the perfect phylogeny problem, where species are specified by a set of characters and each character can occur in a species in one of a fixed number of states. This problem is known to be NP-complete. The dissertation contains the following results on the perfect phylogeny problem: (1) A linear time algorithm when all the characters have two states. (2) A polynomial time algorithm when the number of character states is fixed. (3) A polynomial time algorithm when the number of characters is fixed.