Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier

dc.contributor.author Ouyang, Gaoyuan
dc.contributor.author Besser, Matthew
dc.contributor.author Kramer, Matthew
dc.contributor.author Akinc, Mufit
dc.contributor.author Ray, Pratik
dc.contributor.department Ames Laboratory
dc.contributor.department Materials Science and Engineering
dc.date 2020-07-22T22:11:00.000
dc.date.accessioned 2021-02-24T20:42:27Z
dc.date.available 2021-02-24T20:42:27Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2019
dc.date.embargo 2021-03-20
dc.date.issued 2019-06-25
dc.description.abstract <p>We present a design concept for developing ZrB2-SiC-AlN composites with enhanced oxidative stability at ultra-high temperatures (∼2000 °C) and low pressures (100 Torr). The oxidative stability of these materials arises from a protective silica based scale. However, active oxidation of SiC above 1700 °C presents a challenge, which we circumvent through the in-situ growth of a zirconia layer that serves as a thermal barrier, ensuring that the effective temperature at the zirconia/Si rich subscale is less than the active oxidation temperature. The design concept is validated by a series of ultra-high temperature oxidation experiments under static as well as cyclic conditions.</p>
dc.description.comments <p>This is a manuscript of an article published as Ouyang, Gaoyuan, Matthew F. Besser, Matthew J. Kramer, Mufit Akinc, and Pratik K. Ray. "Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier." <em>Journal of Alloys and Compounds</em> 790 (2019): 1119-1126. DOI: <a href="https://doi.org/10.1016/j.jallcom.2019.03.250" target="_blank">10.1016/j.jallcom.2019.03.250</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/ameslab_pubs/434/
dc.identifier.articleid 1438
dc.identifier.contextkey 18619602
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_pubs/434
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/93282
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_pubs/434/2019_OuyangGaoyuan_DesigningOxidation.pdf|||Sat Jan 15 00:16:08 UTC 2022
dc.source.uri 10.1016/j.jallcom.2019.03.250
dc.subject.disciplines Metallurgy
dc.subject.keywords Oxidation
dc.subject.keywords Ultra-high temperature ceramics (UHTCs)
dc.subject.keywords Thermal cycling
dc.subject.keywords Silica
dc.title Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication bf9f7e3e-25bd-44d3-b49c-ed98372dee5e
File
Original bundle
Now showing 1 - 1 of 1
Name:
2019_OuyangGaoyuan_DesigningOxidation.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
Description:
Collections