Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier
Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier
dc.contributor.author | Ouyang, Gaoyuan | |
dc.contributor.author | Besser, Matthew | |
dc.contributor.author | Kramer, Matthew | |
dc.contributor.author | Akinc, Mufit | |
dc.contributor.author | Ray, Pratik | |
dc.contributor.department | Ames Laboratory | |
dc.contributor.department | Materials Science and Engineering | |
dc.date | 2020-07-22T22:11:00.000 | |
dc.date.accessioned | 2021-02-24T20:42:27Z | |
dc.date.available | 2021-02-24T20:42:27Z | |
dc.date.copyright | Tue Jan 01 00:00:00 UTC 2019 | |
dc.date.embargo | 2021-03-20 | |
dc.date.issued | 2019-06-25 | |
dc.description.abstract | <p>We present a design concept for developing ZrB2-SiC-AlN composites with enhanced oxidative stability at ultra-high temperatures (∼2000 °C) and low pressures (100 Torr). The oxidative stability of these materials arises from a protective silica based scale. However, active oxidation of SiC above 1700 °C presents a challenge, which we circumvent through the in-situ growth of a zirconia layer that serves as a thermal barrier, ensuring that the effective temperature at the zirconia/Si rich subscale is less than the active oxidation temperature. The design concept is validated by a series of ultra-high temperature oxidation experiments under static as well as cyclic conditions.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Ouyang, Gaoyuan, Matthew F. Besser, Matthew J. Kramer, Mufit Akinc, and Pratik K. Ray. "Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier." <em>Journal of Alloys and Compounds</em> 790 (2019): 1119-1126. DOI: <a href="https://doi.org/10.1016/j.jallcom.2019.03.250" target="_blank">10.1016/j.jallcom.2019.03.250</a>. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/ameslab_pubs/434/ | |
dc.identifier.articleid | 1438 | |
dc.identifier.contextkey | 18619602 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | ameslab_pubs/434 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/93282 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/ameslab_pubs/434/2019_OuyangGaoyuan_DesigningOxidation.pdf|||Sat Jan 15 00:16:08 UTC 2022 | |
dc.source.uri | 10.1016/j.jallcom.2019.03.250 | |
dc.subject.disciplines | Metallurgy | |
dc.subject.keywords | Oxidation | |
dc.subject.keywords | Ultra-high temperature ceramics (UHTCs) | |
dc.subject.keywords | Thermal cycling | |
dc.subject.keywords | Silica | |
dc.title | Designing oxidation resistant ultra-high temperature ceramics through the development of an adherent native thermal barrier | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 25913818-6714-4be5-89a6-f70c8facdf7e | |
relation.isOrgUnitOfPublication | bf9f7e3e-25bd-44d3-b49c-ed98372dee5e |
File
Original bundle
1 - 1 of 1
- Name:
- 2019_OuyangGaoyuan_DesigningOxidation.pdf
- Size:
- 1.75 MB
- Format:
- Adobe Portable Document Format
- Description: