Combinatorial innovation, evidence from patent data, and mandated innovation

Thumbnail Image
Date
2015-01-01
Authors
Clancy, Matthew
Major Professor
Advisor
GianCarlo Moschini
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Economics

The Department of Economic Science was founded in 1898 to teach economic theory as a truth of industrial life, and was very much concerned with applying economics to business and industry, particularly agriculture. Between 1910 and 1967 it showed the growing influence of other social studies, such as sociology, history, and political science. Today it encompasses the majors of Agricultural Business (preparing for agricultural finance and management), Business Economics, and Economics (for advanced studies in business or economics or for careers in financing, management, insurance, etc).

History
The Department of Economic Science was founded in 1898 under the Division of Industrial Science (later College of Liberal Arts and Sciences); it became co-directed by the Division of Agriculture in 1919. In 1910 it became the Department of Economics and Political Science. In 1913 it became the Department of Applied Economics and Social Science; in 1924 it became the Department of Economics, History, and Sociology; in 1931 it became the Department of Economics and Sociology. In 1967 it became the Department of Economics, and in 2007 it became co-directed by the Colleges of Agriculture and Life Sciences, Liberal Arts and Sciences, and Business.

Dates of Existence
1898–present

Historical Names

  • Department of Economic Science (1898–1910)
  • Department of Economics and Political Science (1910-1913)
  • Department of Applied Economics and Social Science (1913–1924)
  • Department of Economics, History and Sociology (1924–1931)
  • Department of Economics and Sociology (1931–1967)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

This dissertation explores the implications of a new model of knowledge production. In my model, researchers have access to a set of primitive knowledge elements that can be combined to form ideas, where a new combination is a new idea. Underlying parameters governing the connections between elements stochastically determine whether a given combination yields a useful idea (some elements tend to work well together, and others do not). These underlying parameters are unknown to researchers, but as they attempt to combine elements and create ideas, they observe signals which they use to improve their beliefs via Bayesian updating. I embed this production function into a simple model of research incentives, where a firms receive a reward for discovering new and useful combinations, but pay a cost to conduct research.

I investigate empirically these predictions using a large dataset on US utility patents: all 8.3 million utility patents granted between 1836 and 2012. From this analysis, I find that the probability a pair of knowledge “elements” (now proxied by technology classifications assigned by patent examiners) will be combined in any given year is increasing in the number of past combinations, decreasing over time, and increasing when both elements in the pair are also used with many other elements. These predictions are consistent with my model. The same work also predicts that patenting activity is positively correlated with changes in researcher knowledge about the connections between elements, and negatively correlated with time. Using panel data on 429 technology classes, I find the growth rate of patents is falling over time, but that increases can be forecast from positive changes in connections between elements 1-5 years earlier, even after controlling for numerous other factors.

In my second paper, I examine the characteristics of the optimal research strategy for a forward-looking researcher using the above framework. To characterize the optimal strategy, I examine two special cases that permit analytic solutions, as well as a set of 100 numerically solved cases. The optimal research strategy reproduces many stylized facts about the innovation process, including the initial dominance of applied research relative to basic research.

The third paper of my dissertation examines the impact of environmental policy choice on innovation, when research is characterized by unobservable (to the policy-maker) variance in technological opportunity. I assume there exist two types of energy, clean and dirty, that are perfect substitutes but for their production costs and a negative externality from dirty energy. Innovators are expected profit maximizers, and their decision to expend resources on R&D depends on technological opportunity, as well as the policy of the government. We show the policy-maker’s decision to use quota or price based incentives matters. Price based incentives such as a carbon tax are characterized by disperse outcomes, with more R&D resources expended when technological opportunity is high, and reduced amounts when technological opportunity is low. Quotas such as mandates, in contrast, lead to a more consistent level of R&D spending across differences in technological opportunity. Thus, price-based systems are more likely to deliver great technological advances or none at all, while mandates are more likely to deliver consistent incremental gains. Moreover, we also show an optimal carbon tax is likely to outperform any mandate in expected welfare terms, and has less information requirements.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015