Physics-based image enhancement for infrared thermography

Thumbnail Image
Date
2010-07-01
Authors
Holland, Stephen
Renshaw, Jeremy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Holland, Stephen
Professor
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

Thermal imaging with an infrared camera can be used to view the location and intensity of heat sources in space and time. In a thermal conductor, thermal diffusion blurs out those heat sources. Knowledge of the physics of thermal diffusion can be used to enhance the spatial and temporal resolution of thermal images. In two dimensions, quantitative reconstruction of the heat source intensity is possible. The same algorithm applied to three-dimensional heat flows provides dramatic improvements in temporal and spatial resolution of the thermal images. Performance is illustrated both in theory and by experiment. An application example demonstrates utility to nondestructive evaluation.

Comments

This is a post-print of an article from NDT&E International, 43, no. 5 (July 2010): 440–445, doi: 10.1016/j.ndteint.2010.04.004.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections