From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world

Date
2020-01-01
Authors
Waring, Bonnie
Hall, Steven
Sulman, Benjamin
Reed, Sasha
Smith, A. Peyton
Averill, Colin
Creamer, Courtney
Cusack, Daniela
Hall, Steven
Jastrow, Julie
Jilling, Andrea
Kemner, Kenneth
Kleber, Markus
Liu, Xiao-Jun Allen
Pett-Ridge, Jennifer
Schulz, Marjorie
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon‐climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool‐based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment. The dynamic processes that control the physicochemical protection of carbon translate poorly to pool‐based SOC models; as a result, we are challenged to mechanistically predict how environmental change will impact movement of carbon between soils and the atmosphere. Here, we propose a novel conceptual framework to explore controls on belowground carbon cycling: Probabilistic Representation of Organic Matter Interactions within the Soil Environment (PROMISE). In contrast to traditional model frameworks, PROMISE does not attempt to define carbon pools united by common thermodynamic or functional attributes. Rather, the PROMISE concept considers how SOC cycling rates are governed by the stochastic processes that influence the proximity between microbial decomposers and organic matter, with emphasis on their physical location in the soil matrix. We illustrate the applications of this framework with a new biogeochemical simulation model that traces the fate of individual carbon atoms as they interact with their environment, undergoing biochemical transformations and moving through the soil pore space. We also discuss how the PROMISE framework reshapes dialogue around issues related to SOC management in a changing world. We intend the PROMISE framework to spur the development of new hypotheses, analytical tools, and model structures across disciplines that will illuminate mechanistic controls on the flow of carbon between plant, soil, and atmospheric pools.

Comments

This article is published as Waring, Bonnie G., Benjamin N. Sulman, Sasha Reed, A. Peyton Smith, Colin Averill, Courtney A. Creamer, Daniela F. Cusack et al. "From pools to flow: The PROMISE framework for new insights on soil carbon cycling in a changing world." Global Change Biology (2020). doi: 10.1111/gcb.15365.

Description
Keywords
Citation
DOI
Collections