Single-Molecule Dendrimer-Hydrocarbon Interaction

Date
2008-01-01
Authors
Pasupathy, Karthikeyan
Lamm, Monica
Suek, Nicholas
Lyons, John
Ching, Justin
Jones, Aaron
Lu, Qi
Lamm, Monica
Ke, Pu Chun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Chemical and Biological Engineering
Abstract

We report our single-molecule fluorescence microscopy and molecular dynamics simulation studies on the interaction of poly(amidoamine) dendrimer and squalane hydrocarbon in aqueous solution. Our spectrophotometry measurements indicate that this interaction increases with the pH of the solvent. Our simulations show that squalane resides primarily on the perimeter of the dendrimer at low to neutral pH, but becomes encapsulated by the dendrimer at high pH. Using single-molecule fluorescence microscopy, we have identified that the binding between PAMAM and squalane is reversible. At a pH value of 8, the approaching, binding, and characteristic times of a single fluorescently-labeled dendrimer to squalane are 0.5 s, 7.5 s, and 0.5 s, respectively. Both our spectrophotometry measurements and simulations show that the interaction between PAMAM and squalane is stronger for lower generation dendrimers. This study facilitates our understanding of using dendritic and hyperbranched polymers for gas hydrate prevention in the petroleum industry.

Comments

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Description
Keywords
Citation
DOI
Collections