Intrinsic magnetic properties in R(Fe1−xCox)11TiZ(R=Yand Ce;Z=H,C,and N)

Date
2016-07-01
Authors
Ke, Liqin
Johnson, Duane
Johnson, Duane
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryMaterials Science and Engineering
Abstract

To guide improved properties coincident with reduction of critical materials in permanent magnets, we investigate via density functional theory (DFT) the intrinsic magnetic properties of a promising system, R(Fe1−xCox)11TiZ with R=Y, Ce and interstitial doping (Z=H,C,N). The magnetization M, Curie temperature TC, and magnetocrystalline anisotropy energy K calculated in local density approximation to DFT agree well with measurements. Site-resolved contributions to K reveal that all three Fe sublattices promote uniaxial anisotropy in YFe11Ti, while competing anisotropy contributions exist in YCo11Ti. As observed in experiments on R(Fe1−xCox)11Ti, we find a complex nonmonotonic dependence of K on Co content and show that anisotropy variations are a collective effect of MAE contributions from all sites and cannot be solely explained by preferential site occupancy. With interstitial doping, calculated TC enhancements are in the sequence of N>C>H, with volume and chemical effects contributing to the enhancement. The uniaxial anisotropy of R(Fe1−xCox)11TiZ generally decreases with C and N; although, for R=Ce, C doping is found to greatly enhance it for a small range of 0.7

Comments

This article is from Phys. Rev. B 94, 024423, doi:10.1103/PhysRevB.94.024423. Posted with permission.

Description
Keywords
Citation
DOI
Collections