Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel

Date
2018-11-21
Authors
Białowiec, Andrzej
Micuda, Monika
Koziel, Jacek
Koziel, Jacek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringAgricultural and Biosystems EngineeringToxicology
Abstract

In this work, for the first time, the feasibility of obtaining carbonized refuse-derived fuel (CRDF) pelletization from municipal solid waste (MSW) was shown. Production of CRDF by torrefaction of MSW could be the future of recycling technology. The objective was to determine the applied pressure needed to produce CRDF pellets with compressive strength (CS) comparable to conventional biomass pellets. Also, the hypothesis that a binder (water glass (WG)) applied to CRDF as a coating can improve CS was tested. The pelletizing was based on the lab-scale production of CRDF pellets with pressure ranging from 8.5 MPa to 76.2 MPa. The resulting CS pellets increased from 0.06 MPa to 3.44 MPa with applied pelletizing pressure up to the threshold of 50.8 MPa, above which it did not significantly improve (p < 0.05). It was found that the addition of 10% WG to 50.8 MPa CRDF pellets or coating them with WG did not significantly improve the CS (p < 0.05). It was possible to produce durable pellets from CRDF. The CS was comparable to pine pellets. This research advances the concept of energy recovery from MSW, particularly by providing practical information on densification of CRDF originating from the torrefaction of the flammable fraction of MSW–refuse-derived fuel. Modification of CRDF through pelletization is proposed as preparation of lower volume fuel with projected lower costs of its storage and transportation and for a wider adoption of this technology.

Comments

This article is published as Białowiec, Andrzej, Monika Micuda and Jacek A. Koziel, "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel." Energies 11 (2018): 3233. DOI: 10.3390/en11113233. Posted with permission.

Description
Keywords
Citation
DOI
Collections