Sparse and efficient replication variance estimation for complex surveys

Date
2013-06-01
Authors
Kim, Jae Kwang
Kim, Jae Kwang
Wu, Changbao
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Statistics
Organizational Unit
Journal Issue
Series
Department
Statistics
Abstract

It is routine practice for survey organizations to provide replication weights as part of survey data files. These replication weights are meant to produce valid and efficient variance estimates for a variety of estimators in a simple and systematic manner. Most existing methods for constructing replication weights, however, are only valid for specific sampling designs and typically require a very large number of replicates. In this paper we first show how to produce replication weights based on the method outlined in Fay (1984) such that the resulting replication variance estimator is algebraically equivalent to the fully efficient linearization variance estimator for any given sampling design. We then propose a novel weight-calibration method to simultaneously achieve efficiency and sparsity in the sense that a small number of sets of replication weights can produce valid and efficient replication variance estimators for key population parameters. Our proposed method can be used in conjunction with existing resampling techniques for large-scale complex surveys. Validity of the proposed methods and extensions to some balanced sampling designs are also discussed. Simulation results showed that our proposed variance estimators perform very well in tracking coverage probabilities of confidence intervals. Our proposed strategies will likely have impact on how public-use survey data files are produced and how these data sets are analyzed.

Comments

This article is published as Kim, J.K. and Wu, C. (2013). “Sparse and efficient replication variance estimation for complex surveys," Survey Methodology 39, 91-120. Posted with permission.

Description
Keywords
Citation
DOI
Source
Collections