Identification of a Novel G2073A Mutation in 23S rRNA in Amphenicol-Selected Mutants of Campylobacter jejuni Ma, Licai Shen, Zhangqi Zhang, Qijing Naren, Gaowa Li, Hui Xia, Xi Wu, Congming Shen, Jianzhong Zhang, Qijing Wang, Yang
dc.contributor.department Veterinary Microbiology and Preventive Medicine 2018-02-17T11:10:51.000 2020-07-07T05:14:26Z 2020-07-07T05:14:26Z Wed Jan 01 00:00:00 UTC 2014 2014-04-11
dc.description.abstract <p><strong>Objectives</strong></p> <p>This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture.</p> <p><strong>Methods</strong></p> <p>Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations.</p> <p><strong>Results</strong></p> <p>C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides.</p> <p><strong>Conclusions</strong></p> <p>This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.</p>
dc.description.comments <p>This article is from <em>PLoS ONE</em> 9 (2014): e94503, doi:<a href="" target="_blank">10.1371/journal.pone.009450</a>3. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1125
dc.identifier.contextkey 8047319
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath vmpm_pubs/124
dc.language.iso en
dc.source.bitstream archive/|||Fri Jan 14 19:20:33 UTC 2022
dc.source.uri 10.1371/journal.pone.0094503
dc.subject.disciplines Genetics
dc.subject.disciplines Veterinary Microbiology and Immunobiology
dc.subject.disciplines Veterinary Preventive Medicine, Epidemiology, and Public Health
dc.subject.keywords Animicrobial resistance
dc.subject.keywords Ribosomal RNA
dc.subject.keywords Campylobacter
dc.subject.keywords Chlorapenicol
dc.subject.keywords Mutant strains
dc.subject.keywords Erythromycin
dc.subject.keywords Mutation
dc.subject.keywords Mutation detection
dc.title Identification of a Novel G2073A Mutation in 23S rRNA in Amphenicol-Selected Mutants of Campylobacter jejuni
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 1c6a5dfc-c604-457f-85be-122910db782e
relation.isOrgUnitOfPublication 16f8e472-b1cd-4d8f-b016-09e96dbc4d83
Original bundle
Now showing 1 - 1 of 1
363.96 KB
Adobe Portable Document Format