Investigation of blending parameters using soybean derived additives in polymer modified asphalt

Date
2021-01-01
Authors
Staver, Maxwell
Major Professor
Eric W. Cochran
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Chemical and Biological Engineering
Abstract

The state of the roadways within the United States is rapidly declining as maintenance and replacement costs remain high. The use of high quality modified asphalts will extend the service life and reduce the need for frequent maintenance. The use of rejuvenators in asphalt reduces the stiffness allowing for higher content of recycled asphalt materials. This provides both an increase in the sustainability of pavements as well as a decrease in the cost of creating new asphalt mixtures. Asphalt can also be modified by elastomeric polymers increasing the stiffness and elasticity leading to an improved high temperature and fatigue performance.

The research provided herein describes a novel soybean derived biopolymer and rejuvenator used to modify asphalt binder. The use of both the biopolymer and rejuvenator in a polymer modified asphalt along with sulfur leads to an increase in the high temperature performance, elasticity, and low temperature performance. Using statistical modelling, it was determined that the order of additions, with certain restrictions, has a negligible effect on the rheological properties of the asphalt. The duration of blending was also investigated to determine the effect on the elastic performance using rheology and fluorescence microscopy. It was observed that initially the blend without the biopolymer had higher elastic performance at short blending duration, but was overtaken by the blend containing the biopolymer at long blend durations leading to superior performance.

Comments
Description
Keywords
Citation
DOI
Source