Laboratory and in situ evaluations of using bio-based co-product for pavement geo-materials stabilization

dc.contributor.advisor Halil Ceylan
dc.contributor.author Li, Yizhou
dc.contributor.department Department of Civil, Construction and Environmental Engineering
dc.date 2019-08-21T13:59:43.000
dc.date.accessioned 2020-06-30T03:15:29Z
dc.date.available 2020-06-30T03:15:29Z
dc.date.copyright Wed May 01 00:00:00 UTC 2019
dc.date.embargo 2001-01-01
dc.date.issued 2019-01-01
dc.description.abstract <p>Lignosulfonate, a co-product of paper pulp production, has traditionally been used for dust suppression purpose. Although lignosulfonate has been reported as an alternative soil stabilizer because of its natural properties, its use has not been adequately investigated for soil stabilization purposes. Correspondingly, very limited field practice has been conducted in applying these laboratory attempts.</p> <p>For this study, homogeneously diluted lignosulfonate was mixed with two types of silty soils in the laboratory with the goals of improving their strength and durability. Measurements and observations were obtained from six laboratory tests on untreated and lignosulfonate stabilized soils, including: (1) Proctor compaction test, (2) unconfined compressive strength (UCS) test, (3) freeze-thaw durability test, (4) wet-dry durability test, (5) scanning electron microscope (SEM) analysis, and (6) set time test. The unconfined compressive strength test results demonstrated that only a low dosage of lignosulfonate and water was required to improve the strength of sandy silt with gravel. Based on the outcomes of the durability tests, lignosulfonate improved the wet-dry resistance of both types of silty soils, and a significant improvement was noticed in freeze-thaw durability for sandy silt with clay with the addition of lignosulfonate. The SEM analysis indicated that lignosulfonate was capable of physically bonding soil particles. The set time test conveyed the strength increment of lignosulfonate itself and its mechanisms, indicating that the hardening process also contributed to increasing the stabilized soil strength.</p> <p>In the field demonstration, five soil stabilizers (cement, ammonium-based lignosulfonate, chlorides, Claycrete, and Base One) were sprayed on a gravel road subgrade. Seasonal in situ tests and documentations were conducted both before and one week after the construction to monitor the performance of the stabilized section and to draw the lessons learned from the practice. Light weight deflectometer (LWD) test and dynamic cone penetration (DCP) test were performed. The construction process was documented both visually and in written form. Some critical lessons were learned, which provide recommendations for future studies and benefit relevant practitioners.</p> <p>This study provides guidance for subgrade stabilization with lignosulfonate on the basis of its laboratory and field investigations.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/17043/
dc.identifier.articleid 8050
dc.identifier.contextkey 14821069
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/17043
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/31226
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/17043/Li_iastate_0097M_17868.pdf|||Fri Jan 14 21:14:35 UTC 2022
dc.subject.disciplines Civil Engineering
dc.subject.disciplines Geotechnical Engineering
dc.subject.keywords field demonstration
dc.subject.keywords in situ tests
dc.subject.keywords lab investigation
dc.subject.keywords lignosulfonate
dc.subject.keywords soil stabilization
dc.subject.keywords subgrade stabilization
dc.title Laboratory and in situ evaluations of using bio-based co-product for pavement geo-materials stabilization
dc.type thesis en_US
dc.type.genre thesis en_US
dspace.entity.type Publication
relation.isOrgUnitOfPublication 933e9c94-323c-4da9-9e8e-861692825f91
thesis.degree.discipline Civil Engineering
thesis.degree.level thesis
thesis.degree.name Master of Science
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Li_iastate_0097M_17868.pdf
Size:
6.21 MB
Format:
Adobe Portable Document Format
Description: