Fabrication of Conductive Hollow Microfibers for Encapsulation of Astrocyte Cells

Date
2022-03-11
Authors
Alimoradi, Nima
Nasirian, Vahid
Aykar, Saurabh
McNamara, Marilyn C.
Niaraki-Asli, Amir Ehsan
Montazami, Reza
Makowski, Andrew
Hashemi, Nicole
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
bioRxiv
Altmetrics
Authors
Research Projects
Organizational Units
Mechanical Engineering
Organizational Unit
Biomedical Sciences
Organizational Unit
Ames Laboratory
Organizational Unit
Bioeconomy Institute
Organizational Unit
Journal Issue
Series
Department
Mechanical EngineeringBiomedical SciencesAmes LaboratoryBioeconomy Institute
Abstract
The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries by physiologically relevant platforms. A triple-flow microfluidic device was developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2. This five-channel pattern actualized continuous mild fabrication of hollow fibers under an optimized flowing rate ratio of 300: 200: 100 μL.min−1. The polymer solution was 2.5% alginate in 0.1% graphene, and a 30% polyethylene glycol solution was used as the sheath and core solutions. The morphology and physical properties of microstructures were investigated by scanning electron microscopy, electrochemical, and surface area analyzers. Subsequently, these conductive microfibers’ biocompatibility was studied by encapsulating mouse astrocyte cells within these scaffolds. The cells could successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days. These unique 3D hollow scaffolds could significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrated unique advantages such as 0.728 cm3.gr−1 porosity and twice more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.
Comments
This is a pre-print of the article Alimoradi, Nima, Vahid Nasirian, Saurabh S. Aykar, Marilyn C. McNamara, Amir Ehsan Niaraki-Asli, Reza Montazami, Andrew Makowski, and Nicole N. Hashemi. "Fabrication of Conductive Hollow Microfibers for Encapsulation of Astrocyte Cells." bioRxiv (2022). DOI: 10.1101/2022.03.09.483669. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Copyright 2022 The Authors. Posted with permission.
Description
Keywords
Citation
DOI
Collections