Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride (C3N4) polymorphs

Supplemental Files
Date
2020-05-03
Authors
Datta, Sujoy
Singh, Prashant
Jana, Debnarayan
Chaudhuri, Chhanda
Harbola, Manoj
Johnson, Duane
Johnson, Duane
Mookerjee, Abhijit
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Physics and Astronomy
Organizational Unit
Journal Issue
Series
Department
Ames LaboratoryPhysics and AstronomyMaterials Science and EngineeringChemical and Biological Engineering
Abstract

A fully self-consistent density-functional theory (DFT) with improved functionals is used to provide a comprehensive account of structural, electronic, and optical properties of C3N4 polymorphs. Using our recently developed van Leeuwen-Baerends (vLB) corrected local-density approximation (LDA), we implemented LDA + vLB within full-potential Nth-order muffin-tin orbital (FP-NMTO) method and show that it improves structural properties and band gaps compared to semi-local functionals (LDA/GGA). We demonstrate that the LDA + vLB predicts band-structure and work-function for well-studied 2D-graphene and bulk-Si in very good agreement with experiments, and more exact hybrid functional (HSE) calculations as implemented in the Quantum-Espresso (QE) package. The structural and electronic-structure (band gap) properties of C3N4 polymorphs calculated using FP-NMTO-LDA + vLB is compared with more sophisticated hybrid-functional calculations. We also perform detailed investigation of photocatalytic behavior using QE-HSE method of C3N4 polymorphs through work-function, band (valence and conduction) position with respect to water reduction and oxidation potential. Our results show γ-C3N4 as the best candidate for photocatalysis among all the C3N4 polymorphs but it is dynamically unstable at ‘zero’ pressure. We show that γ-C3N4 can be stabilized under hydrostatic-pressure, which improves its photocatalytic behavior relative to water reduction and oxidation potentials.

Comments

This is a manuscript of the article Datta, Sujoy, Prashant Singh, Debnarayan Jana, Chhanda B. Chaudhuri, Manoj K. Harbola, Duane D. Johnson, and Abhijit Mookerjee. "Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride polymorphs." Carbon (2020). DOI: 10.1016/j.carbon.2020.04.008. Posted with permission.

Description
Keywords
Citation
DOI
Collections