Fujita type global existence: global nonexistence theorems for weakly coupled systems of reaction-diffusion equations

Thumbnail Image
Date
1993
Authors
Uda, Yoshitaka
Major Professor
Advisor
Howard A. Levine
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

In this thesis, we study the global existence and the global nonexistence (blow up in finite time) of nonnegative solutions of the initial value problem for a weakly coupled system of reaction-diffusion equations ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T);\eqalignu( x,0)&= u[subscript]0( x) ≥ 0 v( x,0)&=v[subscript]0( x)≥ 0 xϵ IR[superscript]Nwhere s[subscript]1,s[subscript]2≥0, p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2 > 1, T ≤ [infinity] (the length of the existence interval) and the L[subscript]1,L[subscript]2 are uniformly elliptic second order differential operators with uniformly bounded coefficients. We present several results for the systems:;( S[subscript][delta])≤ft\\eqalignu[subscript]t &= [delta][delta] u + v[superscript]p[subscript]1 v[subscript]t &= [delta] v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where 0 ≤ [delta] ≤ 1 and p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1; ( S[subscript]L)≤ft\\eqalignu[subscript]t &= L[subscript]1u + v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1 and ≤ft\\eqalignL[subscript]1u &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(a[subscript]ij( x)[partial] u[over][partial] x[subscript] j) L[subscript]2v &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(b[subscript]ij( x)[partial] v[over][partial] x[subscript] j) . x ϵ IR[superscript]Nwith the following assumptions:;(i) the coefficients a[subscript]ij, b[subscript]ij are sufficiently smooth (a[subscript]ij,b[subscript]ijϵ C[superscript][infinity](IR[superscript]N)). (ii) a[subscript]ij = a[subscript]ji; b[subscript]ij = b[subscript]ji. (iii) there exists a constant [nu]≥1 such that ≤ft\\eqalign[nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N a[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 [nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N b[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 . x, [xi] ϵ IR[superscript]N.;( S[subscript]t)≤ft\\eqalignu[subscript]t &= [delta] u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= [delta] v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1.;( S[subscript]Lt) ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1. ( S[subscript]k\ell) ≤ft\\eqalignu[subscript]t &= u[subscript]x[subscript]i[subscript]1x[subscript]i[subscript]1 +·s+ u[subscript]x[subscript]i[subscript] kx[subscript]i[subscript] k + v[superscript]p[subscript]1 v[subscript]t &= v[subscript]x[subscript]j[subscript]1x[subscript]j[subscript]1 +·s+ v[subscript]x[subscript]j[subscript] \ellx[subscript]j[subscript] \ell+ u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where 1≤ k, \ell ≤ N, \min(k,\ell) 1.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 1993
Funding
Subject Categories
Keywords
Supplemental Resources
Source