Fujita type global existence: global nonexistence theorems for weakly coupled systems of reaction-diffusion equations

Date
1993
Authors
Uda, Yoshitaka
Major Professor
Advisor
Howard A. Levine
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Mathematics
Organizational Unit
Journal Issue
Series
Department
Mathematics
Abstract

In this thesis, we study the global existence and the global nonexistence (blow up in finite time) of nonnegative solutions of the initial value problem for a weakly coupled system of reaction-diffusion equations ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T);\eqalignu( x,0)&= u[subscript]0( x) ≥ 0 v( x,0)&=v[subscript]0( x)≥ 0 xϵ IR[superscript]Nwhere s[subscript]1,s[subscript]2≥0, p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2 > 1, T ≤ [infinity] (the length of the existence interval) and the L[subscript]1,L[subscript]2 are uniformly elliptic second order differential operators with uniformly bounded coefficients. We present several results for the systems:;( S[subscript][delta])≤ft\\eqalignu[subscript]t &= [delta][delta] u + v[superscript]p[subscript]1 v[subscript]t &= [delta] v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where 0 ≤ [delta] ≤ 1 and p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1; ( S[subscript]L)≤ft\\eqalignu[subscript]t &= L[subscript]1u + v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + u[superscript]p[subscript]2 . ( x, t)ϵ IR[superscript]N x (0,T)where p[subscript]1,p[subscript]2 ≥ 1 with p[subscript]1p[subscript]2 > 1 and ≤ft\\eqalignL[subscript]1u &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(a[subscript]ij( x)[partial] u[over][partial] x[subscript] j) L[subscript]2v &≡ [sigma][subscript]spi,j=1N [partial][over] [partial] x[subscript] i≤ft(b[subscript]ij( x)[partial] v[over][partial] x[subscript] j) . x ϵ IR[superscript]Nwith the following assumptions:;(i) the coefficients a[subscript]ij, b[subscript]ij are sufficiently smooth (a[subscript]ij,b[subscript]ijϵ C[superscript][infinity](IR[superscript]N)). (ii) a[subscript]ij = a[subscript]ji; b[subscript]ij = b[subscript]ji. (iii) there exists a constant [nu]≥1 such that ≤ft\\eqalign[nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N a[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 [nu][superscript]-1 ǁ [xi] ǁ [superscript]2 &≤ [sigma][subscript]spi,j=1N b[subscript]ij( x)[xi][subscript]i[xi][subscript]j ≤ [nu] ǁ [xi] ǁ [superscript]2 . x, [xi] ϵ IR[superscript]N.;( S[subscript]t)≤ft\\eqalignu[subscript]t &= [delta] u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= [delta] v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1.;( S[subscript]Lt) ≤ft\\eqalignu[subscript]t &= L[subscript]1u + t[superscript]s[subscript]1v[superscript]p[subscript]1 v[subscript]t &= L[subscript]2v + t[superscript]s[subscript]2u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where s[subscript]1,s[subscript]2≥0 and p[subscript]1,p[subscript]2≥1 with p[subscript]1p[subscript]2>1. ( S[subscript]k\ell) ≤ft\\eqalignu[subscript]t &= u[subscript]x[subscript]i[subscript]1x[subscript]i[subscript]1 +·s+ u[subscript]x[subscript]i[subscript] kx[subscript]i[subscript] k + v[superscript]p[subscript]1 v[subscript]t &= v[subscript]x[subscript]j[subscript]1x[subscript]j[subscript]1 +·s+ v[subscript]x[subscript]j[subscript] \ellx[subscript]j[subscript] \ell+ u[superscript]p[subscript]2 . ( x,t)ϵ IR[superscript]N x (0,T)where 1≤ k, \ell ≤ N, \min(k,\ell) 1.

Comments
Description
Keywords
Citation
Source