Perturbation theory calculations of model pair potential systems

Thumbnail Image
Date
2016-01-01
Authors
Gong, Jianwu
Major Professor
Advisor
Xueyu Song
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

Helmholtz free energy is one of the most important thermodynamic properties for condensed matter systems. It is closely related to other thermodynamic properties such as chemical potential and compressibility. It is also the starting point for studies of interfacial properties and phase coexistence if free energies of different phases can be obtained.

In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. Our results indicate that the perturbation theory provides an accurate approach to the free energy calculations of liquid and solid phases based upon comparisons with results from molecular dynamics (MD) and Monte Carlo (MC) simulations.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
thesis
Comments
Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 2016
Funding
Subject Categories
Supplemental Resources
Source