Dryland Malt Barley Yield and Quality Affected by Tillage, Cropping Sequence, and Nitrogen Fertilization

Date
2013-01-07
Authors
Sainju, Upendra
Lenssen, Andrew
Lenssen, Andrew
Barsotti, Joy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Agronomy
Organizational Unit
Journal Issue
Series
Department
Agronomy
Abstract

Malt barley (Hordeum vulgare L.) yield and quality have been evaluated using various cultivars and N rates but little is known about the effects of tillage and cropping sequence. We evaluated the effects of tillage, cropping sequence, and N fertilization on dryland malt barley yield, grain characteristics, N uptake, and N use-efficiency from 2006 to 2011 in eastern Montana. Treatments were no-till continuous malt barley (NTCB), no-till malt barley–pea (Pisum sativum L.) (NTB–P), no-till malt barley–fallow (NTB–F), and conventional till malt barley–fallow (CTB–F), with split application of N rates (0,40, 80, and 120 kg N ha–1) in randomized complete block with three replications. As N rates increased, malt barley grain yield, protein concentration, and N uptake increased in NTB–F, NTB–P, and NTCB, but test weight, plumpness, and N-use efficiency decreased in all tillage and cropping sequence treatments. Similarly, plant stand, biomass (stems and leaves) yield, and N uptake increased with increased N rates. Grain and biomass yields, N uptake, and N-use efficiency were greater in CTB–F than in NTB–P and NTCB but tillage had no effect on these parameters. Malt barley yield and N uptake varied with cropping sequences and N rates among years. Although grain yield increased with increased N rates, NTB–P with N rates between 40 and 80 kg N ha−1 may be used to sustain dryland malt barley yield and quality (protein concentration < 135 g kg−1, plumpness > 800 g kg−1), thereby helping to reduce the potentials for soil erosion and N leaching and increase soil organic matter in the northern Great Plains.

Comments

This article is from Agronomy Journal 105 (2013): 329–340, doi:10.2134/agronj2012.0343.

Description
Keywords
Citation
DOI
Collections