Forecasting and model averaging with structural breaks
dc.contributor.advisor | Helle Bunzel | |
dc.contributor.advisor | Gray Calhoun | |
dc.contributor.author | Yin, Anwen | |
dc.contributor.department | Department of Economics (LAS) | |
dc.date | 2018-08-11T08:00:44.000 | |
dc.date.accessioned | 2020-06-30T02:58:42Z | |
dc.date.available | 2020-06-30T02:58:42Z | |
dc.date.copyright | Thu Jan 01 00:00:00 UTC 2015 | |
dc.date.embargo | 2001-01-01 | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | <p>This dissertation consists of three chapters. Collectively they attempt to investigate</p> <p>on how to better forecast a time series variable when there is uncertainty on the stability</p> <p>of model parameters.</p> <p>The first chapter applies the newly developed theory of optimal and robust weights</p> <p>to forecasting the U.S. market equity premium in the presence of structural breaks.</p> <p>The empirical results suggest that parameter instability cannot fully explain the weak</p> <p>forecasting performance of most predictors used in related empirical research.</p> <p>The second chapter introduces a two-stage forecast combination method to forecasting</p> <p>the U.S. market equity premium out-of-sample. In the first stage, for each predictive</p> <p>model, we combine its stable and break cases by using several model averaging methods. Next, we pool all adjusted predictive models together by applying equal weights. The empirical results suggest that this new method can potentially offer substantial predictive gains relative to the simple one-stage overall equal weights method.</p> <p>The third chapter extends model averaging theory under uncertainty regarding structural</p> <p>breaks to the out-of-sample forecast setting, and proposes new predictive model</p> <p>weights based on the leave-one-out cross-validation criterion (CV), as CV is robust to</p> <p>heteroscedasticity and can be applied generally. It provides Monte Carlo and empirical</p> <p>evidence showing that CV weights outperform several competing methods.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/etd/14720/ | |
dc.identifier.articleid | 5727 | |
dc.identifier.contextkey | 8077643 | |
dc.identifier.doi | https://doi.org/10.31274/etd-180810-4271 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | etd/14720 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/28905 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/etd/14720/Yin_iastate_0097E_15162.pdf|||Fri Jan 14 20:25:27 UTC 2022 | |
dc.subject.disciplines | Economics | |
dc.subject.disciplines | Finance and Financial Management | |
dc.subject.disciplines | Statistics and Probability | |
dc.subject.keywords | Economics | |
dc.subject.keywords | Forecast Combination | |
dc.subject.keywords | Forecast Evaluation | |
dc.subject.keywords | Forecasting | |
dc.subject.keywords | Model Averaging | |
dc.subject.keywords | Parameter Instability | |
dc.subject.keywords | Time Series | |
dc.title | Forecasting and model averaging with structural breaks | |
dc.type | dissertation | |
dc.type.genre | dissertation | |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 4c5aa914-a84a-4951-ab5f-3f60f4b65b3d | |
thesis.degree.level | dissertation | |
thesis.degree.name | Doctor of Philosophy |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Yin_iastate_0097E_15162.pdf
- Size:
- 1003.92 KB
- Format:
- Adobe Portable Document Format
- Description: