Subset selection for multiple linear regression via optimization

Date
2020-01-24
Authors
Park, Young-Woong
Klabjan, Diego
Park, Young-Woong
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Information Systems and Business Analytics
Abstract

Subset selection in multiple linear regression aims to choose a subset of candidate explanatory variables that tradeoff fitting error (explanatory power) and model complexity (number of variables selected). We build mathematical programming models for regression subset selection based on mean square and absolute errors, and minimal-redundancy–maximal-relevance criteria. The proposed models are tested using a linear-program-based branch-and-bound algorithm with tailored valid inequalities and big M values and are compared against the algorithms in the literature. For high dimensional cases, an iterative heuristic algorithm is proposed based on the mathematical programming models and a core set concept, and a randomized version of the algorithm is derived to guarantee convergence to the global optimum. From the computational experiments, we find that our models quickly find a quality solution while the rest of the time is spent to prove optimality; the iterative algorithms find solutions in a relatively short time and are competitive compared to state-of-the-art algorithms; using ad-hoc big M values is not recommended.

Comments

This accepted article is published as Park, Y.W., Klabjan, D. Subset selection for multiple linear regression via optimization . J Glob Optim 77, 543–574 (2020). doi: 10.1007/s10898-020-00876-1. Posted with permission.

Description
Keywords
Citation
DOI
Source
Collections