Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites

Thumbnail Image
Date
2014-01-01
Authors
Madbouly, Samy
Schrader, James
Srinivasan, Gowrishankar
Liu, Kunwei
McCabe, Kenneth
Grewell, David
Graves, William
Kessler, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Materials Science and EngineeringEcology, Evolution and Organismal BiologyHorticultureAgricultural and Biosystems EngineeringAgricultural and Biosystems Engineering
Abstract

The extensive use of plastics in agriculture has increased the need for development and implementation of polymer materials that can degrade in soils under natural conditions. The biodegradation behavior in soil of polyhydroxyalkanoate (PHA) composites with 10 wt% distiller's dried grains with solubles (DDGS) was characterized and compared to pure PHA over 24 weeks. Injection-molded samples were measured for degradation weight loss every 4 weeks, and the effects of degradation times on morphological, thermomechanical, and viscoelastic properties were evaluated by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and small-amplitude oscillatory shear flow experiments. Incorporation of DDGS had a strong effect on biodegradation rate, mechanical properties, and production cost. Material weight loss increased linearly with increasing biodegradation time for both neat PHA and the PHA/DDGS 90/10 composites. Weight loss after 24 weeks was approximately six times greater for the PHA/DDGS 90/10 composites than for unaltered PHA under identical conditions. Rough surface morphology was observed in early biodegradation stages (≥8 weeks). With increasing biodegradation time, the composite surface eroded and was covered with well-defined pits that were evenly distributed, giving an areolate structure. Zero shear viscosity, Tg, gelation temperature, and cold crystallization temperature of the composites decreased linearly with increasing biodegradation time. Addition of DDGS to PHA establishes mechanical and biodegradation properties that can be utilized in sustainable plastics designed to end their lifecycle as organic matter in soil. Our results provide information that will guide development of PHA composites that fulfill application requirements then degrade harmlessly in soil.

Comments

This is a manuscript of an article published as Madbouly, Samy A., James A. Schrader, Gowrishankar Srinivasan, Kunwei Liu, Kenneth G. McCabe, David Grewell, William R. Graves, and Michael R. Kessler. "Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites." Green Chemistry 16, no. 4 (2014): 1911-1920. DOI: 10.1039/C3GC41503A. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections