Attack resilient algorithms and testbed federation for wide-area protection and control in smart grid

dc.contributor.advisor Manimaran Govindarasu
dc.contributor.author Singh, Vivek Kumar
dc.contributor.department Department of Electrical and Computer Engineering
dc.date 2021-01-16T18:25:30.000
dc.date.accessioned 2021-02-25T21:39:33Z
dc.date.available 2021-02-25T21:39:33Z
dc.date.copyright Tue Dec 01 00:00:00 UTC 2020
dc.date.embargo 2020-12-04
dc.date.issued 2020-01-01
dc.description.abstract <p>Today’s energy infrastructure is undergoing a massive transformation across all generation, transmission, and distribution systems to provide reliability, efficiency, and sustainability to the power system network. During the past 10 years, there has been a remarkable enhancement in developing close-loop wide-area protection and control (WAPAC) applications, such as automatic generation control (AGC), wide-area protection scheme (WAPS), synchrophasor-based wide-area voltage control system (WAVCS), etc., in the energy management system (EMS) to provide an adequate situational awareness to control center operators during physical disturbances and natural events. The rapid digitalization, unencrypted communication, and numerous data-sharing devices have increased digital access points that have exposed the grid network to countless cyberattacks pertinent to the WAPAC cybersecurity. Given the amount of complex grid network coupled with legacy infrastructures, it is untrustworthy to completely rely on information technology (IT)-based conventional security measures to defend against evolving cyberattacks. Hence, there is a compelling need to go beyond the traditional paradigm of ‘security by obscurity’ and ‘bolt-on’ security measures, and develop a suite of innovative security solutions at multiple layers to transform the current “fault-resilient” grid into “fault and attack-resilient” grid of the future. This dissertation specifically focuses on developing application-specific attack-resilient solutions for critical WAPAC applications in the smart grid. The first part of the study, Attack-Resilient Wide-Area Protection Scheme, presents a cyber-physical attack-resilient system (CPARS) for WAPS, where two anomaly detection methods are proposed to detect multi-level cyberattacks followed by the rules-based intrusion mitigation system (RIMS) to initiate effective mitigation strategies, tailored to these attacks, to restore the normal grid operation after disturbances. The first anomaly detection component, Machine learning-based Anomaly Detection for Centralized WAPS, discusses a novel architecture and methodology for developing a machine-learning-based anomaly detection system (ADS) for the centralized wide-area protection system (CWAPS) by applying the variational mode decomposition (VMD) technique and decision tree (DT) algorithms using cyber logs and synchrophasor measurements. The second component, Multi-Agent-based Anomaly Detection for Decentralized WAPS, presents a two-level hierarchical multi-agent-based decentralized WAPS against the system-aware stealthy cyber-attacks. Finally, for the RIMS, the state transition diagram-based mitigation measures are defined based on the grid operation states and experimental testing and evaluation are presented in a cyber-physical testbed environment. The second part of the study, Attack-Resilient Wide-Area Voltage Control System, addresses the existing vulnerabilities in the wide-area voltage control system (WAVCS), presents the methodology for performing an impact analysis during data integrity attacks, and proposes a data-driven attackresilient system (DARS) by incorporating machine learning-based ADS and rules-based anomaly mitigation system (RAMS) to detect these attacks and provide necessary mitigation actions to maintain the transient voltage stability after disturbances. Finally, the third part, Networked Federation Testbed (NEFTSec) for Smart Grid Cybersecurity, focuses on developing an interconnected federated testbed through a common network like the internet, describes its conceptual architectures, and also presents its design components for experimental testing, validation, and evaluation. Further, it presents the co-simulation interface algorithm (CIA) to facilitate the geographically-dispersed real-time distributed simulation (GD-RTDS) during the cyber-physical federation. In general, this dissertation presents innovative attack-resilient solutions for WAPAC applications that are experimentally tested and evaluated using the PowerCyber testbed and NEFTSec platform to accelerate the transition of state-of-the-art research works to the real-field deployments.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/etd/18402/
dc.identifier.articleid 9409
dc.identifier.contextkey 21104857
dc.identifier.doi https://doi.org/10.31274/etd-20210114-137
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath etd/18402
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/94554
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/etd/18402/Singh_iastate_0097E_19167.pdf|||Fri Jan 14 21:41:36 UTC 2022
dc.subject.keywords Cyber-physical system
dc.subject.keywords Cybersecurity
dc.subject.keywords Machine learning
dc.subject.keywords Smart grid
dc.subject.keywords Synchrophasor
dc.subject.keywords Testbed Federation
dc.title Attack resilient algorithms and testbed federation for wide-area protection and control in smart grid
dc.type thesis en_US
dc.type.genre thesis en_US
dspace.entity.type Publication
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
thesis.degree.discipline Electrical Engineering( Electric Powerand Energy Systems)
thesis.degree.level thesis
thesis.degree.name Doctor of Philosophy
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Singh_iastate_0097E_19167.pdf
Size:
5.7 MB
Format:
Adobe Portable Document Format
Description: