A hybrid method for haptic feedback to support manual virtual product assembly

Date
2010-01-01
Authors
Faas, Daniela
Journal Title
Journal ISSN
Volume Title
Publisher
Source URI
Altmetrics
Authors
Research Projects
Organizational Units
Mechanical Engineering
Organizational Unit
Journal Issue
Series
Abstract

The purpose of this research is to develop methods to support manual virtual assembly using haptic (force) feedback in a virtual environment. The results of this research will be used in an engineering framework for assembly simulation, training, and maintenance. The key research challenge is to advance the ability of users to assemble complex, low clearance CAD parts as they exist digitally without the need to create expensive physical prototypes. The proposed method consists of a Virtual Reality (VR) system that combines voxel collision detection and boundary representation methods into a hybrid algorithm containing the necessary information for both force feedback and constraint recognition. The key to this approach will be successfully developing the data structure and logic needed to switch between collision detection and constraint recognition while maintaining a haptic refresh rate of 1000 Hz.

VR is a set of unique technologies that support human-centered computer interaction. Experience with current VR systems that simulate low clearance assembly operations with haptic feedback indicate that such systems are highly desirable tools in the evaluation of preliminary designs, as well as virtual training and maintenance processes. This work will result in a novel interface for assembly methods prototyping, and an interface that will allow intuitive interaction with parts based on a powerful combination of analytical, visual and haptic tools.

Description
Keywords
Haptic Feedback, Human Computer Interaction, Manual Assembly, Mechanical Design., Virtual Reality
Citation