Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing

Supplemental Files
Date
2019-11-29
Authors
Hou, Huilong
Simsek, Emrah
Ma, Tao
Johnson, Nathan
Qian, Suxin
Levitas, Valery
Cissé, Cheikh
Stasak, Drew
Al Hasan, Naila
Zhou, Lin
Hwang, Yunho
Radermacher, Reinhard
Levitas, Valery
Kramer, Matthew
Zaeem, Mohsen
Stebner, Aaron
Ott, Ryan
Cui, Jun
Takeuchi, Ichiro
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Aerospace Engineering
Organizational Unit
Ames Laboratory
Organizational Unit
Mechanical Engineering
Organizational Unit
Journal Issue
Series
Department
Aerospace EngineeringAmes LaboratoryMechanical EngineeringMaterials Science and Engineering
Abstract

Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.

Comments

This article is published as Hou, Huilong, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cisse, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, and Ichiro Takeuchi. "Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing." Science 366, no. 6469 (2019): 1116-1121. DOI: 10.1126/science.aax7616. Posted with permission.

Description
Keywords
Citation
DOI
Collections