Dietary zinc concentration and lipopolysaccharide injection affect circulating trace minerals, acute phase protein response, and behavior as evaluated by an ear-tag–based accelerometer in beef steers

dc.contributor.author VanValin, Katherine R.
dc.contributor.author Carmichael-Wyatt, Remy N.
dc.contributor.author Deters, Erin L.
dc.contributor.author Messersmith, Elizabeth M.
dc.contributor.author Heiderscheit, Katie J.
dc.contributor.author Hochmuth, Katherine G.
dc.contributor.author Jackson, Trey D.
dc.contributor.author Peschel, Joshua
dc.contributor.author Johnson, Anna K.
dc.contributor.author Hansen, Stephanie L.
dc.contributor.department Agricultural and Biosystems Engineering
dc.contributor.department Animal Science
dc.contributor.department Civil, Construction and Environmental Engineering
dc.contributor.department Electrical and Computer Engineering
dc.date.accessioned 2022-01-05T17:48:09Z
dc.date.available 2022-01-05T17:48:09Z
dc.date.issued 2021-10
dc.description.abstract To assess plasma trace mineral (TM) concentrations, the acute phase protein response, and behavior in response to a lipopolysaccharide (LPS) challenge, 96 Angus cross steers (average initial body weight [BW]: 285 ± 14.4 kg) were sorted into two groups by BW (heavy and light; n = 48/group), fitted with an ear-tag–based accelerometer (CowManager SensOor; Agis, Harmelen, Netherlands), and stagger started 14 d apart. Consecutive day BW was recorded to start the 24-d trial (days −1 and 0). Dietary treatments began on day 0: common diet with either 30 (Zn30) or 100 (Zn100) mg supplemental Zn/kg DM (ZnSO4). On day 17, steers received one of the following injection treatments intravenously to complete the 2 × 3 factorial: 1) SALINE (~2–3 mL of physiological saline), 2) LOWLPS: 0.25 µg LPS/kg BW, or 3) HIGHLPS: 0.375 µg LPS/kg BW. Blood, rectal temperature (RT), and BW were recorded on day 16 (−24 h relative to injection), and BW was used to assign injection treatment. Approximately 6, 24 (day 18), and 48 (day 19) h after treatment, BW, RT, and blood were collected, and final BW recorded on day 24. Data were analyzed in Proc Mixed of SAS with fixed effects of diet, injection, diet × injection; for BW, RT, dry matter intake (DMI), plasma TM, and haptoglobin-repeated measures analysis were used to evaluate effects over time. Area under the curve analysis determined by GraphPad Prism was used for analysis of accelerometer data. Body weight was unaffected by diet or injection (P ≥ 0.16), but there was an injection × time effect for DMI and RT (P < 0.05), where DMI decreased in both LPS treatments on day 16, but recovered by day 17, and RT was increased in LPS treatments 6 h post-injection. Steers receiving LPS spent less time highly active and eating than SALINE (P < 0.01). Steers in HIGHLPS spent lesser time ruminating, followed by LOWLPS and then SALINE (P < 0.001). An injection × time effect (P < 0.001) for plasma Zn showed decreased concentrations within 6 h of injection and remained decreased through 24 h before recovering by 48 h. A tendency for a diet × time effect (P = 0.06) on plasma Zn suggests plasma Zn repletion occurred at a greater rate in Zn100 compared to Zn30. These results suggest that increased supplemental Zn may alter the rate of recovery of Zn status from an acute inflammatory event. Additionally, ear-tag–based accelerometers used in this study were effective at detecting sickness behavior in feedlot steers, and rumination may be more sensitive than other variables.
dc.description.comments This is the version of record for the article VanValin, Katherine R., Remy N. Carmichael-Wyatt, Erin L. Deters, Elizabeth M. Messersmith, Katie J. Heiderscheit, Katherine G. Hochmuth, Trey D. Jackson, Joshua M. Peschel, Anna K. Johnson, and Stephanie L. Hansen. "Dietary zinc concentration and lipopolysaccharide injection affect circulating trace minerals, acute phase protein response, and behavior as evaluated by an ear-tag–based accelerometer in beef steers." Journal of Animal Science 99, no. 10 (2021): skab278. Available online at DOI: 10.1093/jas/skab278. Copyright 2021 The Author(s). Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Posted with permission.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/9z0KegJr
dc.language.iso en_US
dc.publisher Oxford University Press
dc.source.uri https://doi.org/10.1093/jas/skab278 *
dc.subject.disciplines DegreeDisciplines::Engineering::Bioresource and Agricultural Engineering
dc.subject.disciplines DegreeDisciplines::Life Sciences::Animal Sciences::Beef Science
dc.title Dietary zinc concentration and lipopolysaccharide injection affect circulating trace minerals, acute phase protein response, and behavior as evaluated by an ear-tag–based accelerometer in beef steers
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 9459ddeb-303d-4035-933f-925ec181c7a6
relation.isAuthorOfPublication 3ab64f1f-e7f6-4daa-9a3a-3dbf28e8be78
relation.isAuthorOfPublication 660065e0-23b0-4b25-8b62-71309ed2a3f9
relation.isAuthorOfPublication 3ab64f1f-e7f6-4daa-9a3a-3dbf28e8be78
relation.isOrgUnitOfPublication a01d38de-0760-4ee7-9368-5b381b115ad1
relation.isOrgUnitOfPublication 85ecce08-311a-441b-9c4d-ee2a3569506f
relation.isOrgUnitOfPublication 933e9c94-323c-4da9-9e8e-861692825f91
relation.isOrgUnitOfPublication a75a044c-d11e-44cd-af4f-dab1d83339ff
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2021-PeschelJoshua-DietaryZinc.pdf
Size:
410.5 KB
Format:
Adobe Portable Document Format
Description:
Collections