Identification of an Arsenic Resistance and Arsenic-Sensing System in Campylobacter jejuni

Thumbnail Image
Date
2009-08-01
Authors
Wang, Liping
Jeon, Byeonghwa
Sahin, Orhan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Zhang, Qijing
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Journal Issue
Is Version Of
Versions
Series
Abstract

Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp. to other antimicrobials. In this study, we identified a four-gene operon that contributes to arsenic resistance in Campylobacter. This operon encodes a putative membrane permease (ArsP), a transcriptional repressor (ArsR), an arsenate reductase (ArsC), and an efflux protein (Acr3). PCR analysis of various clinical C. jejuni isolates indicated a significant association of this operon with elevated resistance to arsenite and arsenate. Gene-specific mutagenesis confirmed the role of the ars operon in conferring arsenic resistance. It was further shown that this operon is subject to regulation by ArsR, which directly binds to the ars promoter and inhibits the transcription of the operon. Arsenite inhibits the binding of ArsR to the ars promoter DNA and induces the expression of the ars genes. Mutation of the ars genes did not affect the susceptibility of C. jejuni to commonly used antibiotics. These results identify the ars operon as an important mechanism for arsenic resistance and sensing in Campylobacter.

Comments

This article is published as Wang, Liping, Byeonghwa Jeon, Orhan Sahin, and Qijing Zhang. "Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni." Applied and environmental microbiology 75, no. 15 (2009): 5064-5073. doi: 10.1128/AEM.00149-09. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections