Kinetic transformation of nanofilamentary au Metal-Metal Composites

Thumbnail Image
Date
2004-09-01
Authors
Wongpreedee, Kageeporn
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Russell, Alan
Professor
Research Projects
Organizational Units
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

History
The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence
1975-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Recovery and recrystallization of Au wire can degrade strength and alter conductivity properties during exposure to elevated temperature. Au Deformation Processed Metal-Metal Composites (Au DMMC’s) are being developed for electronic applications requiring high conductivity and high strength. This paper discusses the relationships between microstructure, strength, and resistivity of Au DMMC’s. Au DMMC samples were prepared by a powder metallurgy technique and processed into wire down to diameters as low as 120μm. The extensive deformation reshaped the initially equi-axed powder into filaments that are 30 to 100 nm in diameter and 16 to 180 mm in length, which confers high strength. The high conductivity can be explained by electrons flowing parallel to the filamentary microstructure aligned with the wire axis. Au DMMC’s were found to have good thermal stability compared to conventional cold-worked Au interconnection wires. Although these composites will revert to solid solutions if exposed to high temperatures for prolonged times, their relative stability is sufficient to allow them to maintain their two-phase microstructure during the anticipated lifetime temperature profiles of many products.

Comments

This article is from Gold Bulletin 37 (2004): 174–180, doi:10.1007/BF03215210.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections