Xenotransplantation of adult hippocampal neural progenitors into the developing zebrafish for assessment of stem cell plasticity

Thumbnail Image
Date
2018-05-24
Authors
Sandquist, Elizabeth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sakaguchi, Donald
Director of Biology and Genetics Undergraduate Program and Morrill Professor
Person
Essner, Jeffrey
Professor
Research Projects
Organizational Units
Organizational Unit
Neuroscience
The Graduate Program in Neuroscience is an interdepartmental and interdisciplinary training program at Iowa State University that offers the Master of Science and Doctor of Philosophy degrees. The Neuroscience training program offers a broad spectrum of Neuroscience research opportunities, ranging from the molecular to the cellular to the systems level of analysis. The program includes over 40 faculty from the departments of Biochemistry, Biophysics and Molecular Biology; Biomedical Sciences; Chemical and Biological Engineering; Ecology, Evolution, and Organismal Biology; Food Science and Human Nutrition; Genetics, Development and Cell Biology; Kinesiology; Mechanical Engineering; and Psychology.
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Adult stem cells are considered multipotent, restricted to differentiate into a few tissue-specific cell types. With the advent of technologies which can dedifferentiate and transdifferentiate cell types, assumptions about the process of cell fate determination must be reconsidered, including the role of extrinsic versus intrinsic factors. To determine the plasticity of adult neural progenitors, rat hippocampal progenitor cells were xenotransplanted into embryonic zebrafish. These animals allow for easy detection of transplanted cells due to their external development and transparency at early stages. Adult neural progenitors were observed throughout the zebrafish for the duration of the experiment (at least five days post-transplantation). While the majority of transplanted cells were observed in the central nervous system, a large percentage of cells were located in superficial tissues. However, approximately one-third of these cells retained neural morphology and expression of the neuronal marker, Class III β-tubulin, indicating that the transplanted adult neural progenitors did not adapt alternate fates. A very small subset of cells demonstrated unique, non-neural flattened morphology, suggesting that adult neural progenitors may exhibit plasticity in this model, though at a very low rate. These findings demonstrate that the developing zebrafish may be an efficient model to explore plasticity of a variety of adult stem cell types and the role of external factors on cell fate.

Comments

This article is published as Sandquist EJ, Essner JJ, Sakaguchi DS (2018) Xenotransplantation of adult hippocampal neural progenitors into the developing zebrafish for assessment of stem cell plasticity. PLoS ONE 13(5): e0198025. doi: 10.1371/journal.pone.0198025.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections