Simulation of Uniaxial Compression for Flexible Fibers of Wheat Straw Using the Discrete Element Method

Thumbnail Image
Date
2021
Authors
Schramm, Matthew W.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
American Society of Agricultural and Biological Engineers
Authors
Person
Tekeste, Mehari
Associate Professor
Person
Steward, Brian
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract
To accurately simulate a discrete element method (DEM) model, the material properties must be calibrated to reproduce bulk material behavior. In this study, a method was developed to calibrate DEM parameters for bulk fibrous materials using uniaxial compression. Wheat straw was cut to 100.2 mm lengths. A 227 mm diameter cylindrical container was loosely filled with the cut straw. The material was pre-compressed to 1 kPa. A plunger (50, 150, or 225 mm diameter) was then lowered onto the compressed straw at a rate of 15 mm s-1. This experimental procedure was simulated using a DEM model for different material properties to generate a simulated design of experiment (DOE). The simulated plunger had a travel rate of 40 mm s-1. The contact Young‘s modulus, bond Young‘s modulus, and particle-to-particle friction DEM parameters were found to be statistically significant in the prediction of normal forces on the plunger in the uniaxial compression test. The DEM calibration procedure was used to approximate the mean laboratory results of wheat straw compression with root mean square (RMS) percent errors of 3.77%, 3.02%, and 13.90% for the 50, 150, and 225 mm plungers, respectively.
Comments
This article is published as Schramm, Matthew W., Mehari Z. Tekeste, and Brian L. Steward. "Simulation of uniaxial compression for flexible fibers of wheat straw using the discrete element method." Transactions of the ASABE 64, no. 6 (2021): 2025-2034. DOI: 10.13031/trans.13995. Copyright 2021 American Society of Agricultural and Biological Engineers. Posted with permission.
Description
Keywords
Citation
DOI
Copyright
Collections