Hydrogen Adsorption on Ordered and Disordered Pt-Ni Alloys

No Thumbnail Available
Zhang, Shengjie
Johnson, Duane
Shelton, William
Xu, Ye
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

The bulk properties and chemical reactivity of disordered Pt-Ni alloys in the A1 (fcc) structure are investigated using different methods: Virtual Crystal Approximation (VCA), Korringa–Kohn–Rostoker Coherent Potential Approximation (KKR-CPA), and large explicit supercells generated using Super-Cell Random Approximates (SCRAPs). While VCA predicts lattice constants that closely follow Vegard’s law, the large supercells and KKR-CPA predict lattice constants that are consistently larger than Vegard’s law. KKR-CPA results closely agree with those from the large supercells for the disordered alloys, producing similar projected density of states and magnetic moment across the composition range. For instance, while VCA predicts the disordered alloys to be non-magnetic at a Pt concentration (xPt) ≥ 0.5, KKR-CPA and SCRAPs predict the disordered alloys to remain ferromagnetic to higher Pt concentrations. As xPt decreases, the adsorption of H becomes more exothermic on bulk-terminated (111) surfaces but less exothermic on Pt monolayer-terminated (111) surfaces due largely to strain effects. (111) surfaces cut from the large supercells predict average H adsorption energies on the disordered alloys similar to those on the ordered phases of the same compositions, while VCA predicts H adsorption to be more exothermic.