Easily Prepared Chiral Scorpionates: Tris(2-oxazolinyl)boratoiridium(I) Compounds and Their Interactions with MeOTf

Thumbnail Image
Supplemental Files
Date
2008-10-16
Authors
Baird, Benjamin
Pawlikowski, Andrew
Su, Jiachun
Wiench, Jerzy
Pruski, Marek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sadow, Aaron
Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Optically active C3-symmetric monoanionic ligands are uncommon in organometallic chemistry. Here we describe the synthesis of readily prepared tris(4S-isopropyl-2-oxazolinyl)phenylborate [ToP] and fluxional, zwitterionic four- and five-coordinate iridium(I) compounds [Ir(ToP)(η4-C8H12)] (4) and [Ir(ToP)(CO)2] (5). The highly fluxional nature of 4 and5 makes structural assignment difficult, and the interaction between the iridium(I) center and the [ToP] ligand is established by solid-state and solution 15N NMR methods that permit the direct comparison between solution and solid-state structures. Although iridium cyclooctadiene 4 is a mixture of four- and five-coordinate species, the dicarbonyl 5 is only the five-coordinate isomer. The addition of electrophiles MeOTf and MeI provides the oxazoline N-methylated product rather than the iridium methyl oxidative addition product. N-Methylation was unequivocally proven by through-bond coupling observed in 1H−15N HMBC experiments.

Comments

Reprinted (adapted) with permission from Inorganic Chemistry 47 (2008): 10208, doi:10.1021/ic801637s. Copyright 2008 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections