Reduction of the ordered magnetic moment and its relationship to Kondo coherence in

Thumbnail Image
Date
2018-04-15
Authors
Ueland, Benjamin
Jo, Na Hyun
Sapkota, Aashish
Tian, W.
Masters, Morgan
Hodovanets, Halyna
Downing, Savannah
Schmidt, Connor
McQueeney, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Person
Goldman, Alan
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce1-&ITx&ITLa&ITx&ITCu2Ge2 due to nonmagnetic dilution by La are revealed through neutron diffraction results for x = 0.20, 0.40, 0.75, and 0.85. Magnetic Bragg peaks are found for 0.20 <= x <= 0.75, and both the Ned temperature T-N and the ordered magnetic moment per Ce mu linearly decrease with increasing x. The reduction in mu points to strong hybridization of the increasingly diluted Ce 4f electrons, and we find a remarkable quadratic dependence of mu on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory and show that Ce1-&ITx&ITLa&ITx&ITCu2Ge2 provides an exceptional opportunity to quantitatively study the multiple magnetic interactions in a Kondo lattice.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections