On the Ultrasonic Imaging of Tube/Support Structure of Power Plant Steam Generators

Thumbnail Image
Date
1987
Authors
Saniie, Jafar
Nagle, Daniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The corrosion and erosion of steam generator tubing in nuclear power plants can present problems of both safety and economics. In steam generators, the inconel tubes are fit loosely through holes drilled in carbon steel support plates. Corrosion is of particular concern with such tube/support plate structures. Non-protective magnetite can build up on the inner surface of the support plate holes, and allowed to continue unchecked, will fill the gap, eventually denting and fracturing the tube walls. Therefore, periodic nondestructive inspection can be valuable in characterizing corrosion and can be used in evaluating the effectiveness of chemical treatments used to control or reduce corrosion. Presently, we are investigating the feasibility and practicality of using ultrasound in routing testing for gap measurement, for evaluating the corrosion and assessing the degree of denting. The tube/support structure can be modeled as a multilayer, reverberant target, which when tested with ultrasound results in two sets of reverberating echoes [1]. One set corresponds to the tube wall and the other to the support plate. These echoes must be decomposed and identified in order to evaluate the tube/support structure. This report presents experimental results along with a discussion of various measurements and processing techniques for decomposing and interpreting tube/support echoes at different stages of corrosion.

Comments
Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 1987